Name. \qquad
Reg. No. \qquad

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

B.C.A.
BCA 2C 04—OPERATIONS RESEARCH

Maximum : 60 Marks

Section A (Short Answer Type Questions)

Answer at least eight questions.
Each question carries 3 marks.
All questions can be attended.
Overall Ceiling 24.

1. Write any two applications of OR ?
2. What do you mean by an objective function of an LPP ?
3. What are the basic assumptions of a LPP ?
4. What do you mean by an artificial variable ?
5. What do you mean by basic feasible solution of a Transportation problem?
6. What are Assignment problems ?
7. Define Travelling salesman problem.
8. What do you mean by Degeneracy in a TP ?
9. What is network analysis?
10. What is meant by a Critical path? Why should we know which activities are critical ?
11. What is dummy activity?
12. Distinguish between 'Slack' and 'float'.

Section B (Short Essay Type Questions)

Answer at least five questions.
Each question carries 5 marks.
All questions can be attended.
Overall Ceiling 25.
13. What are the limitations of OR ?

C 4353
14. Solve Graphically :

$$
\begin{array}{r}
\text { Maximizes }=3 x_{1}+5 x_{2} \\
\text { subjected to } x_{1}+2 x_{2} \leq 2000 ; \\
x_{1}+x_{2} \leq 1500 ; \\
x_{2} \leq 600 ; \\
x_{1}, x_{2} \geq \quad 0
\end{array}
$$

15. A manufacturer of furniture makes two products, chairs and tables. Processing of these products is done on two machines A and B. A chair requires 2 hours on machine A and 6 hours on machine B. A table requires 5 hours on machine and no time on machine B. There are 16 hours of time per day available on machine A and 30 hours on machine B. Profit gained by the manufacturer from a chair is Re. 1 and from a table is Rs. 5 respectively. Formulate the problem into a LPP in order to maximise the total profit?
16. Find the initial solution of the following TP by using Lowest cost entry method :

	D_{1}	D_{2}	D_{3}	Supply
O_{1}	2	7	4	5
O_{2}	3	3	1	8
O_{3}	5	4	7	7
O_{4}	1	6	2	14
Demand	7	9	18	

17. Find the optimal solution to the following Assignment problem showing the cost for assigning workers to jobs:

$$
\text { Workers } \begin{gathered}
x \\
{\left[\begin{array}{ccc}
18 & 17 & 16 \\
15 & 13 & 14 \\
19 & 20 & 21
\end{array}\right] .}
\end{gathered}
$$

18. Draw a network diagram to the following set of activities :

Activities	Preceeding activities
A	----------------
B	A
C	A
D	B and C
E	B and C
F	B and C
G	D and E
H	F
I	F
J	G
K	H and I
L	H and I
M	J, K and L
N	

19. Distinguish between PERT and CPM.

Section C

Answer any one question.
The question carries 11 marks.
20. Solve the following LPP by using Two-phase simplex method :

Maximize Z $=5 x_{1}+8 x_{2}$
subjected to: $3 x_{1}+2 x_{2} \geq 3$

$$
\begin{aligned}
x_{1}+4 x_{2} & \geq 4 \\
x_{1}+x_{2} & \leq 5 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

21. Solve the following minimal assignment problems :

	I	II	III	IV	V
A	1	3	2	3	6
B	2	4	3	1	5
C	5	6	3	4	6
D	3	1	4	2	2
E	1	5	6	5	4

