(**Pages** : 4)

Nam	e	 •••••
Reg.	No	

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

B.C.A.

BCA 2C 04—OPERATIONS RESEARCH

Time : Two Hours

Maximum : 60 Marks

Section A (Short Answer Type Questions)

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Write any two applications of OR?
- 2. What do you mean by an objective function of an LPP ?
- 3. What are the basic assumptions of a LPP ?
- 4. What do you mean by an artificial variable ?
- 5. What do you mean by basic feasible solution of a Transportation problem ?
- 6. What are Assignment problems?
- 7. Define Travelling salesman problem.
- 8. What do you mean by Degeneracy in a TP?
- 9. What is network analysis?
- 10. What is meant by a Critical path ? Why should we know which activities are critical ?
- 11. What is dummy activity?
- 12. Distinguish between 'Slack' and 'float'.

 $(8 \times 3 = 24 \text{ marks})$

Section B (Short Essay Type Questions)

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

13. What are the limitations of OR ?

Turn over

 $\mathbf{2}$

14. Solve Graphically:

Maximizes = $3x_1 + 5x_2$ subjected to $x_1 + 2x_2 \le 2000$; $x_1 + x_2 \le 1500$; $x_2 \le 600$; $x_1, x_2 \ge 0$.

15. A manufacturer of furniture makes two products, chairs and tables. Processing of these products is done on two machines A and B. A chair requires 2 hours on machine A and 6 hours on machine B. A table requires 5 hours on machine and no time on machine B. There are 16 hours of time per day available on machine A and 30 hours on machine B. Profit gained by the manufacturer from a chair is Re. 1 and from a table is Rs. 5 respectively. Formulate the problem into a LPP in order to maximise the total profit ?

	D ₁	D ₂	D ₃	Supply
0 ₁	2	7	4	5
O_2	3	3	1	8
O ₃	5	4	7	7
O_4	1	6	2	14
Demand	7	9	18	

16. Find the initial solution of the following TP by using Lowest cost entry method :

17. Find the optimal solution to the following Assignment problem showing the cost for assigning workers to jobs :

	x	У	z	
	18	17	16	
Workers	15	13	14	
	19	20	21	

Activities	Preceeding activities		
А			
В			
С	А		
D	А		
E	B and C		
F	B and C		
G	B and C		
Н	D and E		
I	F		
J	F		
K	G		
L	H and I		
М	H and I		
N	J, K and L		

18. Draw a network diagram to the following set of activities :

19. Distinguish between PERT and CPM.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any **one** question. The question carries 11 marks.

20. Solve the following LPP by using Two-phase simplex method :

Maximize
$$Z = 5x_1 + 8x_2$$

subjected to : $3x_1 + 2x_2 \ge 3$

 $x_1 + 4x_2 \ge 4$

 $x_1 + x_2 \leq 5$

 $x_1, x_2 \ge 0.$

Turn over

	Ι	II	III	IV	V
А	1	3	2	3	6
В	2	4	3	1	5
С	5	6	3	4	6
D	3	1	4	2	2
E	1	5	6	5	4

4

21. Solve the following minimal assignment problems :

(1 × 11 = 11 marks)